
wayback Documentation
Release 0.4.2

Contributors

May 30, 2023

CONTENTS

1 Installation 3

2 Usage 5
2.1 Tutorial . 5
2.2 API Documentation . 6

3 Release History 17
3.1 v0.4.2 (2023-05-29) . 17
3.2 v0.4.1 (2023-03-07) . 17
3.3 v0.4.0 (2022-11-10) . 18
3.4 v0.3.3 (2022-09-30) . 19
3.5 v0.3.2 (2021-11-16) . 19
3.6 v0.3.1 (2021-10-14) . 20
3.7 v0.3.0 (2021-03-19) . 20
3.8 v0.2.6 (2021-03-18) . 23
3.9 v0.3.0 Beta 1 (2021-03-15) . 23
3.10 v0.3.0 Alpha 3 (2020-11-05) . 23
3.11 v0.3.0 Alpha 2 (2020-11-04) . 23
3.12 v0.3.0 Alpha 1 (2020-10-20) . 23
3.13 v0.2.5 (2020-10-19) . 26
3.14 v0.2.4 (2020-09-07) . 26
3.15 v0.2.3 (2020-03-25) . 27
3.16 v0.2.2 (2020-02-13) . 27
3.17 v0.2.1 (2019-12-01) . 27
3.18 v0.2.0 (2019-11-26) . 27
3.19 v0.1 . 27

Index 29

i

ii

wayback Documentation, Release 0.4.2

Wayback is A Python API to the Internet Archive’s Wayback Machine. It gives you tools to search for and load me-
mentos (historical copies of web pages).

The Internet Archive maintains an official “internetarchive” Python package, but it does not focus on the Wayback
Machine. Instead, it is mainly concerned with the APIs and tools that manage the Internet Archive as a whole: managing
items and collections. These are how e-books, audio recordings, movies, and other content in the Internet Archive are
managed. It doesn’t, however, provide particularly good tools for finding or loading historical captures of specific URLs
(i.e. the part of the Internet Archive called the “Wayback Machine”). That’s what the wayback package does.

CONTENTS 1

https://web.archive.org/
https://archive.org/services/docs/api/internetarchive/

wayback Documentation, Release 0.4.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Wayback is meant to be used as a Python library, and is best installed via pip on the command line:

$ pip install wayback

3

wayback Documentation, Release 0.4.2

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

Search for historical mementos (archived copies) of a URL. Download metadata about the mementos and/or the me-
mento content itself.

2.1 Tutorial

2.1.1 What is the earliest memento of nasa.gov?

Instantiate a WaybackClient.

In [1]: from wayback import WaybackClient

In [2]: client = WaybackClient()

Search for all Wayback’s records for nasa.gov.

In [3]: results = client.search('nasa.gov')

This statement should execute fairly quickly because it doesn’t actually do much work. The object we get back,
results, is a generator, a “lazy” object from which we can pull results, one at a time. As we pull items out of it,
it loads them as needed from the Wayback Machine in chronological order. We can see that results by itself is not
informative:

In [4]: results
Out[4]: <generator object WaybackClient.search at 0x55a46312e7e0>

There are couple ways to pull items out of generator like results. One simple way is to use the built-in Python
function next(), like so:

In [5]: record = next(results)

This takes a moment to run because, now that we’ve asked to see the first item in the generator, this lazy object goes to
fetch a chunk of results from the Wayback Machine. Looking at the record in detail,

In [6]: record
Out[6]: CdxRecord(key='gov,nasa)/', timestamp=datetime.datetime(1996, 12, 31, 23, 58, 47,
→˓ tzinfo=datetime.timezone.utc), url='http://www.nasa.gov/', mime_type='text/html',␣
→˓status_code=200, digest='MGIGF4GRGGF5GKV6VNCBAXOE3OR5BTZC', length=1811, raw_url=
→˓'https://web.archive.org/web/19961231235847id_/http://www.nasa.gov/', view_url='https:/
→˓/web.archive.org/web/19961231235847/http://www.nasa.gov/')

5

https://docs.python.org/3/library/functions.html#next

wayback Documentation, Release 0.4.2

we can find our answer: Wayback’s first memento of nasa.gov was in 1996. We can use dot access on record to access
the timestamp specifically.

In [7]: record.timestamp
Out[7]: datetime.datetime(1996, 12, 31, 23, 58, 47, tzinfo=datetime.timezone.utc)

2.1.2 How many times does the word ‘mars’ appear on nasa.gov?

Above, we access the metadata for the oldest memento on nasa.gov, stored in the variable record. Starting from where
we left off, we’ll access the content of the memento and do a very simple analysis.

The Wayback Machine provides multiple playback modes to view the data it has captured. The wayback.Mode.view
mode is a copy edited for human viewers on the web, and the wayback.Mode.original mode is the original copy
of what was captured when the page was scraped. For analysis purposes, we generally want original. (Check the
documentation of wayback.Mode for a few other, less commonly used modes.)

Let’s download the original content using WaybackClient. (You could download the content directly with an HTTP
library like requests, but WaybackClient adds extra tools for dealing with Wayback Machine servers.)

In [8]: from wayback import Mode

`Mode.original` is the default and doesn't need to be explicitly set;
we've set it here to show how you might choose other modes.
In [9]: response = client.get_memento(record, mode=Mode.original)

In [10]: content = response.content.decode()

We can use the built-in method count on strings to count the number of times that 'mars' appears in the content.

In [11]: content.count('mars')
Out[11]: 30

This is case-sensitive, so to be more accurate we should convert the content to lowercase first.

In [12]: content.lower().count('mars')
Out[12]: 39

We picked up a couple additional occurrences that the original count missed.

2.2 API Documentation

The Wayback Machine exposes its data through two different mechanisms, implementing two different standards for
archival data, the CDX API and the Memento API. We implement a Python client that can speak both.

class wayback.WaybackClient(session=None)
A client for retrieving data from the Internet Archive’s Wayback Machine.

You can use a WaybackClient as a context manager. When exiting, it will close the session it’s using (if you’ve
passed in a custom session, make sure not to use the context manager functionality unless you want to live
dangerously).

Parameters

session
[requests.Session, optional]

6 Chapter 2. Usage

wayback Documentation, Release 0.4.2

search(url, *, match_type=None, limit=1000, offset=None, fast_latest=None, from_date=None,
to_date=None, filter_field=None, collapse=None, resolve_revisits=True,
skip_malformed_results=True, matchType=None, fastLatest=None, resolveRevisits=None)

Search archive.org’s CDX API for all captures of a given URL. This returns an iterator of CdxRecord
objects. The StopIteration value is the total count of found captures.

Results include captures with similar, but not exactly matching URLs. They are matched by a SURT-
formatted, canonicalized URL that:

• Does not differentiate between HTTP and HTTPS,

• Is not case-sensitive, and

• Treats www. and www*. subdomains the same as no subdomain at all.

This will automatically page through all results for a given search. If you want fewer results, you can stop
iterating early:

from itertools import islice
first10 = list(islice(client.search(...), 10))

Parameters

url
[str] The URL to search for captures of.

Special patterns in url imply a value for the match_type parameter and match multiple
URLs:

• If the URL starts with *. (e.g. *.epa.gov) OR match_type='domain', the search
will include all URLs at the given domain and its subdomains.

• If the URL ends with /* (e.g. https://epa.gov/*) OR match_type='prefix', the
search will include all URLs that start with the text up to the *.

• Otherwise, this returns matches just for the requeted URL.

match_type
[str, optional] Determines how to interpret the url parameter. It must be one of the
following:

• exact (default) returns results matching the requested URL (see notes about SURT
above; this is not an exact string match of the URL you pass in).

• prefix returns results that start with the requested URL.

• host returns results from all URLs at the host in the requested URL.

• domain returns results from all URLs at the domain or any subdomain of the requested
URL.

The default value is calculated based on the format of url.

limit
[int, default: 1000] Maximum number of results per request to the API (not the maximum
number of results this function yields).

Negative values return the most recent N results.

Positive values are complicated! The search server will only scan so much data on each
query, and if it finds fewer than limit results before hitting its own internal limits, it will
behave as if if there are no more results, even though there may be.

2.2. API Documentation 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

wayback Documentation, Release 0.4.2

Unfortunately, ideal values for limit aren’t very predicatable because the search server
combines data from different sources, and they do not all behave the same. Their parameters
may also be changed over time.

In general. . .

• The default value should work well in typical cases.

• For frequently captured URLs, you may want to set a higher value (e.g. 12,000) for more
efficient querying.

• For infrequently captured URLs, you may want to set a lower value (e.g. 100 or even 10)
to ensure that your query does not hit internal limits before returning.

• For extremely infrequently captured URLs, you may simply want to call search() mul-
tiple times with different, close together from_date and to_date values.

offset
[int, optional] Skip the first N results.

fast_latest
[bool, optional] Get faster results when using a negative value for limit. It may re-
turn a variable number of results that doesn’t match the value of limit. For exam-
ple, search('http://epa.gov', limit=-10, fast_latest=True) may return any
number of results between 1 and 10.

from_date
[datetime or date, optional] Only include captures after this date. Equivalent to the from
argument in the CDX API. If it does not have a time zone, it is assumed to be in UTC.

to_date
[datetime or date, optional] Only include captures before this date. Equivalent to the to
argument in the CDX API. If it does not have a time zone, it is assumed to be in UTC.

filter_field
[str, optional] A filter for any field in the results. Equivalent to the filter argument in
the CDX API. (format: [!]field:regex)

collapse
[str, optional] Collapse consecutive results that match on a given field. (format: fieldname
or fieldname:N – N is the number of chars to match.)

resolve_revisits
[bool, default: True] Attempt to resolve warc/revisit records to their actual content
type and response code. Not supported on all CDX servers.

skip_malformed_results
[bool, default: True] If true, don’t yield records that look like they have no actual me-
mento associated with them. Some crawlers will erroneously attempt to capture bad URLs
like http://mailto:someone@domain.com or http://data:image/jpeg;base64,
AF34... and so on. This is a filter performed client side and is not a CDX API argument.

Yields

version: CdxRecord
A CdxRecord encapsulating one capture or revisit

Raises

UnexpectedResponseFormat
If the CDX response was not parseable.

8 Chapter 2. Usage

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

wayback Documentation, Release 0.4.2

Notes

Several CDX API parameters are not relevant or handled automatically by this function. This does not sup-
port: output, fl, showDupeCount, showSkipCount, lastSkipTimestamp, showNumPages, showPagedIndex.

It also does not support page and pageSize for pagination because they work differently from the resumeKey
method this uses, and results do not include recent captures when using them.

References

• HTTP API Docs: https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server

• SURT formatting: http://crawler.archive.org/articles/user_manual/glossary.html#surt

• SURT implementation: https://github.com/internetarchive/surt

get_memento(url, timestamp=None, mode=Mode.original, *, exact=True, exact_redirects=None,
target_window=86400, follow_redirects=True, datetime=None)

Fetch a memento (an archived HTTP response) from the Wayback Machine.

Not all mementos can be successfully fetched (or “played back” in Wayback terms). In this case,
get_memento can load the next-closest-in-time memento or it will raise wayback.exceptions.
MementoPlaybackError depending on the value of the exact and exact_redirects parameters (see
more details below).

Parameters

url
[str or CdxRecord] URL to retrieve a memento of. This can be any of:

• A normal URL (e.g. http://www.noaa.gov/). When using this form, you must also
specify timestamp.

• A CdxRecord retrieved from wayback.WaybackClient.search().

• A URL of the memento in Wayback, e.g. https://web.archive.org/web/
20180816111911id_/http://www.noaa.gov/

timestamp
[datetime.datetime or datetime.date or str, optional] The time at which to retrieve
a memento of url. If url is a wayback.CdxRecord or full memento URL, this parameter
can be omitted.

mode
[wayback.Mode or str, default: wayback.Mode.original] The playback mode of the
memento. This determines whether the content of the returned memento is exactly as orig-
inally captured (the default) or modified in some way. See wayback.Mode for a description
of possible values.

For more details, see: https://archive-access.sourceforge.net/projects/wayback/
administrator_manual.html#Archival_URL_Replay_Mode

exact
[bool, default: True] If false and the requested memento either doesn’t exist or can’t be
played back, this returns the closest-in-time memento to the requested one, so long as it is
within target_window. If there was no memento in the target window or if exact=True,
then this will raise wayback.exceptions.MementoPlaybackError.

2.2. API Documentation 9

https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
http://crawler.archive.org/articles/user_manual/glossary.html#surt
https://github.com/internetarchive/surt
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://archive-access.sourceforge.net/projects/wayback/administrator_manual.html#Archival_URL_Replay_Mode
https://archive-access.sourceforge.net/projects/wayback/administrator_manual.html#Archival_URL_Replay_Mode
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

wayback Documentation, Release 0.4.2

exact_redirects
[bool, optional] If false and the requested memento is a redirect whose target doesn’t exist
or can’t be played back, this returns the closest-in-time memento to the intended target, so
long as it is within target_window. If unset, this will be the same as exact.

target_window
[int, default: 86400] If the memento is of a redirect, allow up to this many seconds between
the capture of the redirect and the capture of the redirect’s target URL. This window also
applies to the first memento if exact=False and the originally requested memento was
not available. Defaults to 86,400 (24 hours).

follow_redirects
[bool, default: True] If true (the default), get_memento will follow historical redirects
to return the content that a web browser would have ultimately displayed at the requested
URL and time, rather than the memento of an HTTP redirect response (i.e. a 3xx sta-
tus code). That is, if http://example.com/a redirected to http://example.com/b,
then this method returns the memento for /a when follow_redirects=False and the
memento for /b when follow_redirects=True.

Returns

Memento
A Memento object with information about the archived HTTP response.

class wayback.CdxRecord(key, timestamp, url, mime_type, status_code, digest, length, raw_url, view_url)
Item from iterable of results returned by WaybackClient.search()

These attributes contain information provided directly by CDX.

digest

Content hashed as a base 32 encoded SHA-1.

key

SURT-formatted URL

length

Size of captured content in bytes, such as 2767. This may be inaccurate, and may even be None instead of
an integer. If the record is a “revisit record”, indicated by MIME type 'warc/revisit', the length seems
to be the length of the reference, not the length of the content itself. In other cases, the record has no length
information at all, and this attribute will be None instead of a number.

mime_type

MIME type of record, such as 'text/html', 'warc/revisit' or 'unk' (“unknown”) if this information
was not captured.

status_code

Status code returned by the server when the record was captured, such as 200. This is may be None if the
record is a revisit record.

timestamp

The capture time represented as a datetime.datetime, such as datetime.datetime(1996, 12, 31,
23, 58, 47, tzinfo=timezone.utc).

url

The URL that was captured by this record, such as 'http://www.nasa.gov/'.

And these attributes are synthesized from the information provided by CDX.

10 Chapter 2. Usage

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime

wayback Documentation, Release 0.4.2

raw_url

The URL to the raw captured content, such as 'https://web.archive.org/web/
19961231235847id_/http://www.nasa.gov/'.

view_url

The URL to the public view on Wayback Machine. In this view, the links and some subresources in the
document are rewritten to point to Wayback URLs. There is also a navigation panel around the content.
Example URL: 'https://web.archive.org/web/19961231235847/http://www.nasa.gov/'.

class wayback.Memento(*, url, timestamp, mode, memento_url, status_code, headers, encoding, raw,
raw_headers, links, history, debug_history)

Represents a memento (an archived HTTP response). This object is similar to a response object from the pop-
ular “Requests” package, although it has some differences designed to differentiate historical information vs.
current metadata about the stored memento (for example, the headers attribute lists the headers recorded in the
memento, and does not include additional headers that provide metadata about the Wayback Machine).

Note that, like an HTTP response, this object represents a potentially open network connection to the Wayback
Machine. Reading the content or text attributes will read all the data being received and close the connection
automatically, but if you do not read those properties, you must make sure to call close() to close to connection.
Alternatively, you can use a Memento as a context manager. The connection will be closed for you when the
context ends:

>>> with a_memento:
>>> do_something()
>>> # Connection is automatically closed here.

Fields

encoding: str

The text encoding of the response, e.g. 'utf-8'.

headers: dict

A dict representing the headers of the archived HTTP response. The keys are case-insensitive. If you iterate
over it, you will receive the header names as they were originally sent. However, you can look them up via
strings that vary in upper/lower-case. For example:

list(memento.headers) == ['Content-Type', 'Date']
memento.headers['Content-Type'] == memento.headers['content-type']

history: tuple[wayback.Memento]

A list of wayback.Memento objects that were redirects and were followed to produce this memento.

debug_history: tuple[str]

List of all URLs redirects followed in order to produce this memento. These are “memento URLs”
– that is, they are absolute URLs to the Wayback machine like https://web.archive.org/web/
20180816111911id_/http://www.noaa.gov/, rather than URLs of captured redirects, like http:/
/www.noaa.gov. Many of the URLs in this list do not represent actual mementos.

status_code: int

The HTTP status code of the archived HTTP response.

mode: str

The playback mode used to produce the Memento.

timestamp: datetime.datetime

The time the memento was originally captured. This includes tzinfo, and will always be in UTC.

2.2. API Documentation 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

wayback Documentation, Release 0.4.2

url: str

The URL that the memento represents, e.g. http://www.noaa.gov.

memento_url: str

The URL at which the memento was fetched from the Wayback Machine, e.g. https://web.archive.
org/web/20180816111911id_/http://www.noaa.gov/.

ok: bool

Whether the response had an non-error status (i.e. < 400).

is_redirect: bool

Whether the response was a redirect (i.e. had a 3xx status).

content: bytes

The body of the archived HTTP response in bytes.

text: str

The body of the archived HTTP response decoded as a string.

links: dict of (str, dict of (str, str))

Related links to this Memento (e.g. the previous and/or next Memento in time). The keys are the relationship
(e.g. 'prev memento') as a string and the values are dicts where the keys and values are strings.

In each entry, the 'url' key is the URL of the related link, the 'rel' key is the relationship (the same as
the key in the top-level dict), and the rest of the keys will be any other attributes that are relevant for that
link (e.g. 'datetime' or 'type').

For example:

{
'original': {

'url': 'https://www.fws.gov/birds/',
'rel': 'original'

},
'first memento': {

'url': 'https://web.archive.org/web/20050323155300/http://www.fws.
→˓gov:80/birds',

'rel': 'first memento',
'datetime': 'Wed, 23 Mar 2005 15:53:00 GMT'

},
'prev memento': {

'url': 'https://web.archive.org/web/20210125125216/https://www.fws.gov/
→˓birds/',

'rel': 'prev memento',
'datetime': 'Mon, 25 Jan 2021 12:52:16 GMT'

},
'next memento': {

'url': 'https://web.archive.org/web/20210321180831/https://www.fws.gov/
→˓birds',

'rel': 'next memento',
'datetime': 'Sun, 21 Mar 2021 18:08:31 GMT'

},
'last memento': {

'url': 'https://web.archive.org/web/20221006031005/https://fws.gov/birds
→˓',

'rel': 'last memento',
(continues on next page)

12 Chapter 2. Usage

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

wayback Documentation, Release 0.4.2

(continued from previous page)

'datetime': 'Thu, 06 Oct 2022 03:10:05 GMT'
}

}

Links to other mementos use the same mode as the memento object this links attribute belongs to. For
example:

raw_memento = client.get_memento('https://fws.gov/birds', '20210318004901')
raw_memento.links['next memento']['url'] == 'https://web.archive.org/web/
→˓20210321180831id_/https://fws.gov/birds'
The "id_" after the timestamp means "original" mode --------------------------
→˓-------^^^

view_memento = client.get_memento('https://fws.gov/birds', '20210318004901',␣
→˓mode=Mode.view)
view_memento.links['next memento']['url'] == 'https://web.archive.org/web/
→˓20210321180831/https://fws.gov/birds'
Nothing after the timestamp for "view" mode ----------------------------------
→˓-------^

close()

Close the HTTP response for this Memento. This happens automatically if you read content or text, and
if you use the memento as a context manager. This method is always safe to call – it does nothing if the
response has already been closed.

classmethod parse_memento_headers(raw_headers, url='https://web.archive.org/')
Extract historical headers from the Memento HTTP response’s headers.

Parameters

raw_headers
[dict] A dict of HTTP headers from the Memento’s HTTP response.

url
[str, optional] The URL of the resource the headers are being parsed for. It’s used when
header data contains relative/incomplete URL information.

Returns

dict

class wayback.WaybackSession(retries=6, backoff=2, timeout=60, user_agent=None,
search_calls_per_second=1.5, memento_calls_per_second=30)

A custom session object that pools network connections and resources for requests to the Wayback Machine.

Parameters

retries
[int, default: 6] The maximum number of retries for requests.

backoff
[int or float, default: 2] Number of seconds from which to calculate how long to back off
and wait when retrying requests. The first retry is always immediate, but subsequent retries
increase by powers of 2:

seconds = backoff * 2 ^ (retry number - 1)

2.2. API Documentation 13

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

wayback Documentation, Release 0.4.2

So if this was 4, retries would happen after the following delays: 0 seconds, 4 seconds, 8
seconds, 16 seconds, . . .

timeout
[int or float or tuple of (int or float, int or float), default: 60] A timeout to use
for all requests. See the Requests docs for more: https://docs.python-requests.org/en/master/
user/advanced/#timeouts

user_agent
[str, optional] A custom user-agent string to use in all requests. Defaults to: way-
back/{version} (+https://github.com/edgi-govdata-archiving/wayback)

search_calls_per_second
[int or float, default: 1.5] The maximum number of calls made to the search API per
second. To disable the rate limit, set this to 0.

memento_calls_per_second
[int or float, default: 30] The maximum number of calls made to the memento API per
second. To disable the rate limit, set this to 0.

reset()

Reset any network connections the session is using.

2.2.1 Utilities

wayback.memento_url_data(memento_url)
Get the original URL, time, and mode that a memento URL represents a capture of.

Returns

url
[str] The URL that the memento is a capture of.

time
[datetime.datetime] The time the memento was captured in the UTC timezone.

mode
[str] The playback mode.

Examples

Extract original URL, time and mode.

>>> url = ('https://web.archive.org/web/20170813195036id_/'
... 'https://arpa-e.energy.gov/?q=engage/events-workshops')
>>> memento_url_data(url)
('https://arpa-e.energy.gov/?q=engage/events-workshops',
datetime.datetime(2017, 8, 13, 19, 50, 36, tzinfo=timezone.utc),
'id_')

class wayback.Mode(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

An enum describing the playback mode of a memento. When requesting a memento (e.g. with wayback.
WaybackClient.get_memento()), you can use these values to determine how the response body should be
formatted.

14 Chapter 2. Usage

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python-requests.org/en/master/user/advanced/#timeouts
https://docs.python-requests.org/en/master/user/advanced/#timeouts
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str

wayback Documentation, Release 0.4.2

For more details, see: https://archive-access.sourceforge.net/projects/wayback/administrator_manual.html#
Archival_URL_Replay_Mode

Examples

>>> waybackClient.get_memento('https://noaa.gov/',
>>> timestamp=datetime.datetime(2018, 1, 2),
>>> mode=wayback.Mode.view)

Values

original

Returns the HTTP response body as originally captured.

view

Formats the response body so it can be viewed with a web browser. URLs for links and subresources like
scripts, stylesheets, images, etc. will be modified to point to the equivalent memento in the Wayback Ma-
chine so that the resulting page looks as similar as possible to how it would have appeared when originally
captured. It’s mainly meant for use with HTML pages. This is the playback mode you typically use when
browsing the Wayback Machine with a web browser.

javascript

Formats the response body by updating URLs, similar to Mode.view, but designed for JavaScript instead
of HTML.

css

Formats the response body by updating URLs, similar to Mode.view, but designed for CSS instead of
HTML.

image

formats the response body similar to Mode.view, but designed for image files instead of HTML.

2.2.2 Exception Classes

class wayback.exceptions.WaybackException

Base exception class for all Wayback-specific errors.

class wayback.exceptions.UnexpectedResponseFormat

Raised when data returned by the Wayback Machine is formatted in an unexpected or unparseable way.

class wayback.exceptions.BlockedByRobotsError

Raised when a URL can’t be queried in Wayback because it was blocked by a site’s robots.txt file.

class wayback.exceptions.BlockedSiteError

Raised when a URL has been blocked from access or querying in Wayback. This is often because of a takedown
request. (URLs that are blocked because of robots.txt get a BlockedByRobotsError instead.)

class wayback.exceptions.MementoPlaybackError

Raised when a Memento can’t be ‘played back’ (loaded) by the Wayback Machine for some reason. This is a
server-side issue, not a problem in parsing data from Wayback.

2.2. API Documentation 15

https://archive-access.sourceforge.net/projects/wayback/administrator_manual.html#Archival_URL_Replay_Mode
https://archive-access.sourceforge.net/projects/wayback/administrator_manual.html#Archival_URL_Replay_Mode

wayback Documentation, Release 0.4.2

class wayback.exceptions.NoMementoError

Raised when there was no memento available for a given URL. This might mean the given URL has no mementos
at all or that none that are available for playback.

This also means you should not try to request a memento of the same URL in a different timeframe. If there may
be other mementos of the URL available, you’ll get a different error.

class wayback.exceptions.RateLimitError(response)
Raised when the Wayback Machine responds with a 429 (too many requests) status code. In general, this pack-
age’s built-in limits should help you avoid ever hitting this, but if you are running multiple processes in parallel,
you could go overboard.

Attributes

retry_after
[int, optional] Recommended number of seconds to wait before retrying. If the Wayback
Machine does not include it in the HTTP response, it will be set to None.

class wayback.exceptions.WaybackRetryError(retries, total_time, causal_error)
Raised when a request to the Wayback Machine has been retried and failed too many times. The number of tries
before this exception is raised generally depends on your WaybackSession settings.

Attributes

retries
[int] The number of retries that were attempted.

cause
[Exception] The actual, underlying error that would have caused a retry.

time
[int] The total time spent across all retried requests, in seconds.

class wayback.exceptions.SessionClosedError

Raised when a Wayback session is used to make a request after it has been closed and disabled.

16 Chapter 2. Usage

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int

CHAPTER

THREE

RELEASE HISTORY

3.1 v0.4.2 (2023-05-29)

Wayback is not compatible with urllib3 v2, and this release updates the package’s requirements to make sure Pip and
other package managers install compatible versions of Wayback and urllib3. There are no other fixes or new features.

3.2 v0.4.1 (2023-03-07)

3.2.1 Features

wayback.Memento now has a links property with information about other URLs that are related to the memento, such
as the previous or next mementos in time. It’s a dict where the keys identify the relationship (e.g. 'prev memento')
and the values are dicts with additional information about the link. (Issue #57) For example:

{
'original': {

'url': 'https://www.fws.gov/birds/',
'rel': 'original'

},
'first memento': {

'url': 'https://web.archive.org/web/20050323155300id_/http://www.fws.gov:80/birds
→˓',

'rel': 'first memento',
'datetime': 'Wed, 23 Mar 2005 15:53:00 GMT'

},
'prev memento': {

'url': 'https://web.archive.org/web/20210125125216id_/https://www.fws.gov/birds/
→˓',

'rel': 'prev memento',
'datetime': 'Mon, 25 Jan 2021 12:52:16 GMT'

},
'next memento': {

'url': 'https://web.archive.org/web/20210321180831id_/https://www.fws.gov/birds',
'rel': 'next memento',
'datetime': 'Sun, 21 Mar 2021 18:08:31 GMT'

},
'last memento': {

'url': 'https://web.archive.org/web/20221006031005id_/https://fws.gov/birds',
'rel': 'last memento',

(continues on next page)

17

https://github.com/edgi-govdata-archiving/wayback/issues/57

wayback Documentation, Release 0.4.2

(continued from previous page)

'datetime': 'Thu, 06 Oct 2022 03:10:05 GMT'
}

}

One use for these is to iterate through additional mementos. For example, to get the previous memento:

client.get_memento(memento.links['prev memento']['url'])

3.2.2 Fixes & Maintenance

• Fix an issue where the Memento.url attribute might be slightly off from the exact URL that was captured (it
could have a different protocol, different upper/lower-casing, etc.). (Issue #99)

• Fix an error when getting a memento for a redirect in view mode. If you called wayback.WaybackClient.
get_memento()with a URL that turned out to be a redirect at the given time and set the mode option to wayback.
Mode.view, you’d get an exception saying “Memento at {url} could not be played.” Now this works just fine.
(Issue #109)

3.3 v0.4.0 (2022-11-10)

3.3.1 Breaking Changes

This release includes a significant overhaul of parameters for wayback.WaybackClient.search().

• Removed parameters that did nothing, could break search, or that were for internal use only: gzip,
showResumeKey, resumeKey, page, pageSize, previous_result.

• Removed support for extra, arbitrary keyword parameters that could be added to each request to the search API.

• All parameters now use snake_case. (Previously, parameters that were passed unchanged to the HTTP API used
camelCase, while others used snake_case.) The old, non-snake-case names are deprecated, but still work. They’ll
be completely removed in v0.5.0.

– matchType→ match_type

– fastLatest→ fast_latest

– resolveRevisits→ resolve_revisits

• The limit parameter now has a default value. There are very few cases where you should not set a limit (not
doing so will typically break pagination), and there is now a default value to help prevent mistakes. We’ve also
added documentation to explain how and when to adjust this value, since it is pretty complex. (Issue #65)

• Expanded the method documentation to explain things in more depth and link to more external references.

While we were at it, we also renamed the datetime parameter of wayback.WaybackClient.get_memento() to
timestamp for consistency with wayback.CdxRecord and wayback.Memento. The old name still works for now,
but it will be fully removed in v0.5.0.

18 Chapter 3. Release History

https://github.com/edgi-govdata-archiving/wayback/issues/99
https://github.com/edgi-govdata-archiving/wayback/issues/109
https://github.com/edgi-govdata-archiving/wayback/issues/65

wayback Documentation, Release 0.4.2

3.3.2 Features

• wayback.Memento.headers is now case-insensitive. The keys of the headers dict are returned with their
original case when iterating, but lookups are performed case-insensitively. For example:

list(memento.headers) == ['Content-Type', 'Date']
memento.headers['Content-Type'] == memento.headers['content-type']

(Issue #98)

• There are now built-in rate limits for calls to search() and get_memento(). The default values should keep
you from getting temporarily blocked by the Wayback Machine servers, but you can also adjust them when
instantiating wayback.WaybackSession:

Limit get_memento() calls to 2 per second (or one every 0.5 seconds):
client = WaybackClient(WaybackSession(memento_calls_per_second=2))

These now take a minimum of 0.5 seconds, even if the Wayback Machine
responds instantly (there's no delay on the first call):
client.get_memento('http://www.noaa.gov/', timestamp='20180816111911')
client.get_memento('http://www.noaa.gov/', timestamp='20180829092926')

A huge thanks to @LionSzl for implementing this. (Issue #12)

3.3.3 Fixes & Maintenance

• All API requests to archive.org now use HTTPS instead of HTTP. Thanks to @sundhaug92 for calling this out.
(Issue #81)

• Headers from the original archived response are again included in wayback.Memento.headers. As part of
this, the headers attribute is now case-insensitive (see new features above), since the Internet Archive servers
now return headers with different cases depending on how the request was made. (Issue #98)

3.4 v0.3.3 (2022-09-30)

This release extends the timestamp parsing fix from version 0.3.2 to handle a similar problem, but with the month
portion of timestamps in addition to the day. It also implements a small performance improvement in timestamp
parsing. Thanks to @edsu for discovering this issue and addressing this. (Issue #88)

3.5 v0.3.2 (2021-11-16)

Some Wayback CDX records have invalid timestamps with "00" for the day-of-month portion. wayback.
WaybackClient.search() previously raised an exception when parsing CDX records with this issue, but now handles
them safely. Thanks to @8W9aG for discovering this issue and addressing it. (Issue #85)

3.4. v0.3.3 (2022-09-30) 19

https://github.com/edgi-govdata-archiving/wayback/issues/98
https://github.com/edgi-govdata-archiving/wayback/issues/12
https://github.com/edgi-govdata-archiving/wayback/issues/81
https://github.com/edgi-govdata-archiving/wayback/issues/98
https://github.com/edgi-govdata-archiving/wayback/issues/88
https://github.com/edgi-govdata-archiving/wayback/issues/85

wayback Documentation, Release 0.4.2

3.6 v0.3.1 (2021-10-14)

Some Wayback CDX records have no length information, and previously caused wayback.WaybackClient.
search() to raise an exception. These records will have their length property set to None instead of a number.
Thanks to @8W9aG for discovering this issue and addressing it. (Issue #83)

3.7 v0.3.0 (2021-03-19)

This release marks a major update we’re really excited about: wayback.WaybackClient.get_memento() no longer
returns a Response object from the Requests package that takes a lot of extra work to interpret correctly. Instead,
it returns a new wayback.Memento object. It’s really similar to the Response we used to return, but doesn’t mix
up current and historical data — it represents the historical, archived HTTP response that is stored in the Wayback
Machine. This is a big change to the API, so we’ve bumped the version number to 0.3.x.

3.7.1 Notable Changes

• Breaking change: wayback.WaybackClient.get_memento() takes new parameters and has a new return
type. More details below.

• Breaking change: wayback.memento_url_data() now returns 3 values instead of 2. The last value is
a string representing the playback mode (see below description of the new mode parameter on wayback.
WaybackClient.get_memento() for more about playback modes).

• Requests to the Wayback Machine now have a default timeout of 60 seconds. This was important because we’ve
seen many recent issues where the Wayback Machine servers don’t always close connections.

If needed, you can disable this by explicitly setting timeout=Nonewhen creating a wayback.WaybackSession.
Please note this is not a timeout on how long a whole request takes, but on the time between bytes received.

• wayback.WaybackClient.get_memento() now raises wayback.exceptions.NoMementoError when the
requested URL has never been archived by the WaybackMachine. It no longer raises requests.exceptions.
HTTPError under any circumstances.

You may notice that removing APIs from the Requests package is a theme here. Under the hood, Wayback still uses
Requests for HTTP requests, but we expect to change that in order to ensure this package is thread-safe. We will bump
the version to v0.4.x when doing so.

3.7.2 get_memento() Parameters

The parameters in wayback.WaybackClient.get_memento() have been re-organized. The method signature is now:

def get_memento(self,
url, # Accepts new types of values.
datetime=None, # New parameter.
mode=Mode.original, # New parameter.
*, # Everything below is keyword-only.
exact=True,
exact_redirects=None,
target_window=24 * 60 * 60,
follow_redirects=True) # New parameter.

20 Chapter 3. Release History

https://github.com/edgi-govdata-archiving/wayback/issues/83
https://requests.readthedocs.io/
https://requests.readthedocs.io/

wayback Documentation, Release 0.4.2

• All parameters except url (the first parameter) from v0.2.x must now be specified with keywords, and cannot be
specified positionally.

If you previously used keywords, your code will be fine and no changes are necessary:

This still works great!
client.get_memento('http://web.archive.org/web/20180816111911id_/http://www.noaa.
→˓gov/',

exact=False,
exact_redirects=False,
target_window=3600)

However, positional parameters like the following will now cause problems, and you should switch to the above
keyword form:

This will now cause you some trouble :(
client.get_memento('http://web.archive.org/web/20180816111911id_/http://www.noaa.
→˓gov/',

False,
False,
3600)

• The url parameter can now be a normal, non-Wayback URL or a wayback.CdxRecord , and new datetime
and mode parameters have been added.

Previously, if you wanted to get a memento of what http://www.noaa.gov/ looked like on August 1, 2018,
you would have had to construct a complex string to pass to get_memento():

client.get_memento('http://web.archive.org/web/20180801000000id_/http://www.noaa.
→˓gov/')

Now you can pass the URL and time you want as separate parameters:

client.get_memento('http://www.noaa.gov/', datetime.datetime(2018, 8, 1))

If the datetime parameter does not specify a timezone, it will be treated as UTC (not local time).

You can also pass a wayback.CdxRecord that you received from wayback.WaybackClient.search() instead
of a URL and time:

for record in client.search('http://www.noaa.gov/'):
client.get_memento(record)

Finally, you can now specify the playback mode of a memento using the mode parameter:

client.get_memento('http://www.noaa.gov/',
datetime=datetime.datetime(2018, 8, 1),
mode=wayback.Mode.view)

The default mode is wayback.Mode.original, which returns the exact HTTP response body as was originally
archived. Other modes reformat the response body so it’s more friendly for browsing by changing the URLs of
links, images, etc. and by adding informational content to the page about the memento you are viewing. They
are the modes typically used when you view the Wayback Machine in a web browser.

Don’t worry, though — complete Wayback URLs are still supported. This code still works fine:

3.7. v0.3.0 (2021-03-19) 21

wayback Documentation, Release 0.4.2

client.get_memento('http://web.archive.org/web/20180801000000id_/http://www.noaa.
→˓gov/')

• A new follow_redirects parameter specifies whether to follow historical redirects (i.e. redirects that hap-
pened when the requested memento was captured). It defaults to True, which matches the old behavior of this
method.

3.7.3 get_memento() Returns a Memento Object

get_memento() no longer returns a response object from the Requests package. Instead it returns a special-
ized wayback.Memento object, which is similar, but provides more useful information about the Memento than
just the HTTP response from Wayback. For example, memento.url is the original URL the memento is a
capture of (e.g. http://www.noaa.gov/) rather than the Wayback URL (e.g. http://web.archive.org/
web/20180816111911id_/http://www.noaa.gov/). You can still get the full Wayback URL from memento.
memento_url.

You can check out the full API documentation for wayback.Memento, but here’s a quick guide to what’s available:

memento = client.get_memento('http://www.noaa.gov/home',
datetime(2018, 8, 16, 11, 19, 11),
exact=False)

These values were previously not available except by parsing
`memento.url`. The old `memento.url` is now `memento.memento_url`.
memento.url == 'http://www.noaa.gov/'
memento.timestamp == datetime(2018, 8, 29, 8, 8, 49, tzinfo=timezone.utc)
memento.mode == 'id_'

Used to be `memento.url`:
memento.memento_url == 'http://web.archive.org/web/20180816111911id_/http://www.noaa.gov/
→˓'

Used to be a list of `Response` objects, now a *tuple* of Mementos. It
lists only the redirects that are actual Mementos and not part of
Wayback's internal machinery:
memento.history == (Memento<url='http://noaa.gov/home'>,)

Used to be a list of `Response` objects, now a *tuple* of URL strings:
memento.debug_history == ('http://web.archive.org/web/20180816111911id_/http://noaa.gov/
→˓home',

'http://web.archive.org/web/20180829092926id_/http://noaa.gov/
→˓home',

'http://web.archive.org/web/20180829092926id_/http://noaa.gov/
→˓')

Headers now only lists headers from the original archived response, not
additional headers from the Wayback Machine itself. (If there's
important information you needed in the headers, file an issue and let
us know! We'd like to surface that kind of information as attributes on
the Memento now.
memento.headers = {'header_name': 'header_value',

'another_header': 'another_value',
(continues on next page)

22 Chapter 3. Release History

https://requests.readthedocs.io/

wayback Documentation, Release 0.4.2

(continued from previous page)

'and': 'so on'}

Same as before:
memento.status_code
memento.ok
memento.is_redirect
memento.encoding
memento.content
memento.text

3.8 v0.2.6 (2021-03-18)

Fix a major bug where a session’s timeout would not actually be applied to most requests. HUGE thanks to @LionSzl
for discovering this issue and addressing it. (Issue #68)

3.9 v0.3.0 Beta 1 (2021-03-15)

wayback.WaybackClient.get_memento() now raises wayback.exceptions.NoMementoError when the re-
quested URL has never been archived. It also now raises wayback.exceptions.MementoPlaybackError in all
other cases where an error was returned by the Wayback Machine (so you should never see a requests.exceptions.
HTTPError). However, you may still see other network-level errors (e.g. ConnectionError).

3.10 v0.3.0 Alpha 3 (2020-11-05)

Fixes a bug in the new wayback.Memento type where header parsing would fail for mementos with schemeless
Location headers. (Issue #61)

3.11 v0.3.0 Alpha 2 (2020-11-04)

Fixes a bug in the new wayback.Memento type where header parsing would fail for mementos with path-based
Location headers. (Issue #60)

3.12 v0.3.0 Alpha 1 (2020-10-20)

Breaking Changes:

This release focuses on wayback.WaybackClient.get_memento() and makes major, breaking changes to its pa-
rameters and return type. They’re all improvements, though, we promise!

get_memento() Parameters

The parameters in wayback.WaybackClient.get_memento() have been re-organized. The method signature is now:

3.8. v0.2.6 (2021-03-18) 23

https://github.com/edgi-govdata-archiving/wayback/issues/68
https://github.com/edgi-govdata-archiving/wayback/issues/61
https://github.com/edgi-govdata-archiving/wayback/issues/60

wayback Documentation, Release 0.4.2

def get_memento(self,
url, # Accepts new types of values.
datetime=None, # New parameter.
mode=Mode.original, # New parameter.
*, # Everything below is keyword-only.
exact=True,
exact_redirects=None,
target_window=24 * 60 * 60,
follow_redirects=True) # New parameter.

• All parameters except url (the first parameter) from v0.2.x must now be specified with keywords, and cannot be
specified positionally.

If you previously used keywords, your code will be fine and no changes are necessary:

This still works great!
client.get_memento('http://web.archive.org/web/20180816111911id_/http://www.noaa.
→˓gov/',

exact=False,
exact_redirects=False,
target_window=3600)

However, positional parameters like the following will now cause problems, and you should switch to the above
keyword form:

This will now cause you some trouble :(
client.get_memento('http://web.archive.org/web/20180816111911id_/http://www.noaa.
→˓gov/',

False,
False,
3600)

• The url parameter can now be a normal, non-Wayback URL or a wayback.CdxRecord , and new datetime
and mode parameters have been added.

Previously, if you wanted to get a memento of what http://www.noaa.gov/ looked like on August 1, 2018,
you would have had to construct a complex string to pass to get_memento():

client.get_memento('http://web.archive.org/web/20180801000000id_/http://www.noaa.
→˓gov/')

Now you can pass the URL and time you want as separate parameters:

client.get_memento('http://www.noaa.gov/', datetime.datetime(2018, 8, 1))

If the datetime parameter does not specify a timezone, it will be treated as UTC (not local time).

You can also pass a wayback.CdxRecord that you received from wayback.WaybackClient.search() instead
of a URL and time:

for record in client.search('http://www.noaa.gov/'):
client.get_memento(record)

Finally, you can now specify the playback mode of a memento using the mode parameter:

24 Chapter 3. Release History

wayback Documentation, Release 0.4.2

client.get_memento('http://www.noaa.gov/',
datetime=datetime.datetime(2018, 8, 1),
mode=wayback.Mode.view)

The default mode is wayback.Mode.original, which returns the exact HTTP response body as was originally
archived. Other modes reformat the response body so it’s more friendly for browsing by changing the URLs of
links, images, etc. and by adding informational content to the page about the memento you are viewing. They
are the modes typically used when you view the Wayback Machine in a web browser.

Don’t worry, though — complete Wayback URLs are still supported. This code still works fine:

client.get_memento('http://web.archive.org/web/20180801000000id_/http://www.noaa.
→˓gov/')

• A new follow_redirects parameter specifies whether to follow historical redirects (i.e. redirects that hap-
pened when the requested memento was captured). It defaults to True, which matches the old behavior of this
method.

get_memento() Returns a Memento Object

get_memento() no longer returns a response object from the Requests package. Instead it returns a special-
ized wayback.Memento object, which is similar, but provides more useful information about the Memento than
just the HTTP response from Wayback. For example, memento.url is the original URL the memento is a
capture of (e.g. http://www.noaa.gov/) rather than the Wayback URL (e.g. http://web.archive.org/
web/20180816111911id_/http://www.noaa.gov/). You can still get the full Wayback URL from memento.
memento_url.

You can check out the full API docs for wayback.Memento, but here’s a quick guide to what’s available:

memento = client.get_memento('http://www.noaa.gov/home',
datetime(2018, 8, 16, 11, 19, 11),
exact=False)

These values were previously not available except by parsing
`memento.url`. The old `memento.url` is now `memento.memento_url`.
memento.url == 'http://www.noaa.gov/'
memento.timestamp == datetime(2018, 8, 29, 8, 8, 49, tzinfo=timezone.utc)
memento.mode == 'id_'

Used to be `memento.url`:
memento.memento_url == 'http://web.archive.org/web/20180816111911id_/http://www.noaa.gov/
→˓'

Used to be a list of `Response` objects, now a *tuple* of Mementos. It
Still lists only the redirects that are actual Mementos and not part of
Wayback's internal machinery:
memento.history == (Memento<url='http://noaa.gov/home'>,)

Used to be a list of `Response` objects, now a *tuple* of URL strings:
memento.debug_history == ('http://web.archive.org/web/20180816111911id_/http://noaa.gov/
→˓home',

'http://web.archive.org/web/20180829092926id_/http://noaa.gov/
→˓home',

'http://web.archive.org/web/20180829092926id_/http://noaa.gov/
→˓')

(continues on next page)

3.12. v0.3.0 Alpha 1 (2020-10-20) 25

https://requests.readthedocs.io/

wayback Documentation, Release 0.4.2

(continued from previous page)

Headers now only lists headers from the original, archived response, not
additional headers from the Wayback Machine itself. (If there's
important information you needed in the headers, file an issue and let
us know! We'd like to surface that kind of information as attributes on
the Memento now.
memento.headers = {'header_name': 'header_value',

'another_header': 'another_value',
'and': 'so on'}

Same as before:
memento.status_code
memento.ok
memento.is_redirect
memento.encoding
memento.content
memento.text

Under the hood, Wayback still uses Requests for HTTP requests, but we expect to change that soon to ensure this
package is thread-safe.

Other Breaking Changes

Finally, wayback.memento_url_data() now returns 3 values instead of 2. The last value is a string representing the
playback mode (see above description of the new mode parameter on wayback.WaybackClient.get_memento() for
more about playback modes).

3.13 v0.2.5 (2020-10-19)

This release fixes a bug where the target_window parameter for wayback.WaybackClient.get_memento() did
not work correctly if the memento you were redirected to was off by more than a day from the requested time. See
Issue #53 for more.

3.14 v0.2.4 (2020-09-07)

This release is focused on improved error handling.

Breaking Changes:

• The timestamps in CdxRecord objects returned by wayback.WaybackClient.search() now include time-
zone information. (They are always in the UTC timezone.)

Updates:

• The history attribute of a memento now only includes redirects that were mementos (i.e. redirects that would
have been seen when browsing the recorded site at the time it was recorded). Other redirects involved in working
with the memento API are still available in debug_history, which includes all redirects, whether or not they
were mementos.

• Wayback’s CDX search API sometimes returns repeated, identical results. These are now filtered out, so repeat
search results will not be yielded from wayback.WaybackClient.search().

26 Chapter 3. Release History

https://requests.readthedocs.io/
https://github.com/edgi-govdata-archiving/wayback/issues/53

wayback Documentation, Release 0.4.2

• wayback.exceptions.RateLimitError will now be raised as an exception any time you breach the Way-
back Machine’s rate limits. This would previously have been wayback.exceptions.WaybackException,
wayback.exceptions.MementoPlaybackError, or regular HTTP responses, depending on the method you
called. It has a retry_after property that indicates how many seconds you should wait before trying again (if
the server sent that information, otherwise it will be None).

• wayback.exceptions.BlockedSiteError will now be raised any time you search for a URL or request a
memento that has been blocked from access (for example, in situations where the Internet Archive has received
a takedown notice).

3.15 v0.2.3 (2020-03-25)

This release downgrades the minimum Python version to 3.6! You can now use Wayback in places like Google Colab.

The from_date and to_date arguments for wayback.WaybackClient.search() can now be datetime.date
instances in addition to datetime.datetime.

Huge thanks to @edsu for implementing both of these!

3.16 v0.2.2 (2020-02-13)

When errors were raised or redirects were involved in WaybackClient.get_memento(), it was previously possible
for connections to be left hanging open. Wayback now works harder to make sure connections aren’t left open.

This release also updates the default user agent string to include the repo URL. It now looks like: wayback/0.2.2
(+https://github.com/edgi-govdata-archiving/wayback)

3.17 v0.2.1 (2019-12-01)

All custom exceptions raised publicly and used internally are now exposed via a new module, wayback.exceptions.

3.18 v0.2.0 (2019-11-26)

Initial release of this project. See v0.1 below for information about a separate project with the same name that has since
been removed from PyPI.

3.19 v0.1

This version number is reserved because it was the last published release of a separate Python project also named
wayback that has since been deleted from the Python Package Index and subsequently superseded by this one.
That project, which focused on the Wayback Machine’s timemap API, was maintained by Jeff Goettsch (username
jgoettsch on the Python Package Index). Its source code is still available on BitBucket at https://bitbucket.org/
jgoettsch/py-wayback/.

3.15. v0.2.3 (2020-03-25) 27

https://bitbucket.org/jgoettsch/py-wayback/
https://bitbucket.org/jgoettsch/py-wayback/

wayback Documentation, Release 0.4.2

28 Chapter 3. Release History

INDEX

B
BlockedByRobotsError (class in wayback.exceptions),

15
BlockedSiteError (class in wayback.exceptions), 15

C
CdxRecord (class in wayback), 10
close() (wayback.Memento method), 13
content (wayback.Memento attribute), 12
css (wayback.Mode attribute), 15

D
debug_history (wayback.Memento attribute), 11
digest (wayback.CdxRecord attribute), 10

E
encoding (wayback.Memento attribute), 11

G
get_memento() (wayback.WaybackClient method), 9

H
headers (wayback.Memento attribute), 11
history (wayback.Memento attribute), 11

I
image (wayback.Mode attribute), 15
is_redirect (wayback.Memento attribute), 12

J
javascript (wayback.Mode attribute), 15

K
key (wayback.CdxRecord attribute), 10

L
length (wayback.CdxRecord attribute), 10
links (wayback.Memento attribute), 12

M
Memento (class in wayback), 11

memento_url (wayback.Memento attribute), 12
memento_url_data() (in module wayback), 14
MementoPlaybackError (class in wayback.exceptions),

15
mime_type (wayback.CdxRecord attribute), 10
Mode (class in wayback), 14
mode (wayback.Memento attribute), 11

N
NoMementoError (class in wayback.exceptions), 15

O
ok (wayback.Memento attribute), 12
original (wayback.Mode attribute), 15

P
parse_memento_headers() (wayback.Memento class

method), 13

R
RateLimitError (class in wayback.exceptions), 16
raw_url (wayback.CdxRecord attribute), 10
reset() (wayback.WaybackSession method), 14

S
search() (wayback.WaybackClient method), 7
SessionClosedError (class in wayback.exceptions), 16
status_code (wayback.CdxRecord attribute), 10
status_code (wayback.Memento attribute), 11

T
text (wayback.Memento attribute), 12
timestamp (wayback.CdxRecord attribute), 10
timestamp (wayback.Memento attribute), 11

U
UnexpectedResponseFormat (class in way-

back.exceptions), 15
url (wayback.CdxRecord attribute), 10
url (wayback.Memento attribute), 11

29

wayback Documentation, Release 0.4.2

V
view (wayback.Mode attribute), 15
view_url (wayback.CdxRecord attribute), 11

W
WaybackClient (class in wayback), 6
WaybackException (class in wayback.exceptions), 15
WaybackRetryError (class in wayback.exceptions), 16
WaybackSession (class in wayback), 13

30 Index

	Installation
	Usage
	Tutorial
	What is the earliest memento of nasa.gov?
	How many times does the word ‘mars’ appear on nasa.gov?

	API Documentation
	Utilities
	Exception Classes

	Release History
	v0.4.2 (2023-05-29)
	v0.4.1 (2023-03-07)
	Features
	Fixes & Maintenance

	v0.4.0 (2022-11-10)
	Breaking Changes
	Features
	Fixes & Maintenance

	v0.3.3 (2022-09-30)
	v0.3.2 (2021-11-16)
	v0.3.1 (2021-10-14)
	v0.3.0 (2021-03-19)
	Notable Changes
	get_memento() Parameters
	get_memento() Returns a Memento Object

	v0.2.6 (2021-03-18)
	v0.3.0 Beta 1 (2021-03-15)
	v0.3.0 Alpha 3 (2020-11-05)
	v0.3.0 Alpha 2 (2020-11-04)
	v0.3.0 Alpha 1 (2020-10-20)
	v0.2.5 (2020-10-19)
	v0.2.4 (2020-09-07)
	v0.2.3 (2020-03-25)
	v0.2.2 (2020-02-13)
	v0.2.1 (2019-12-01)
	v0.2.0 (2019-11-26)
	v0.1

	Index

